首页> 外文OA文献 >Comparing 2D vector field visualization methods: A user study
【2h】

Comparing 2D vector field visualization methods: A user study

机译:比较2D矢量场可视化方法:用户研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present results from a user study that compared six visualization methods for two- dimensional vector data. Users performed three simple but representative tasks using visualizations from each method: 1) locating all critical points in an image, 2) identifying critical point types, and 3) advecting a particle. Visualization methods included two that used different spatial distributions of short arrow icons, two that used different distributions of integral curves, one that used wedges located to suggest flow lines, and line- integral convolution ( LIC). Results show different strengths and weaknesses for each method. We found that users performed these tasks better with methods that: 1) showed the sign of vectors within the vector field, 2) visually represented integral curves, and 3) visually represented the locations of critical points. Expert user performance was not statistically different from nonexpert user performance. We used several methods to analyze the data including omnibus analysis of variance, pairwise t- tests, and graphical analysis using inferential confidence intervals. We concluded that using the inferential confidence intervals for displaying the overall pattern of results for each task measure and for performing subsequent pairwise comparisons of the condition means was the best method for analyzing the data in this study. These results provide quantitative support for some of the anecdotal evidence concerning visualization methods. The tasks and testing framework also provide a basis for comparing other visualization methods, for creating more effective methods and for defining additional tasks to further understand the tradeoffs among the methods. In the future, we also envision extending this work to more ambitious comparisons, such as evaluating two- dimensional vectors on two- dimensional surfaces embedded in three- dimensional space and defining analogous tasks for three- dimensional visualization methods.
机译:我们提供了一项用户研究的结果,该研究比较了二维矢量数据的六种可视化方法。用户使用每种方法的可视化效果执行了三个简单但具有代表性的任务:1)定位图像中的所有关键点; 2)识别关键点类型; 3)对粒子进行平整。可视化方法包括两种使用短箭头图标的不同空间分布,两种使用积分曲线的不同分布,一种使用定位以建议流线的楔形以及线积分卷积(LIC)。结果显示每种方法的优缺点不同。我们发现用户使用以下方法可以更好地执行这些任务:1)在矢量场中显示矢量的符号; 2)直观表示积分曲线; 3)直观表示关键点的位置。专家用户性能与非专家用户性能在统计上没有差异。我们使用了几种方法来分析数据,包括方差的综合分析,成对t检验和使用推断置信区间的图形分析。我们得出的结论是,使用推论置信区间显示每个任务量度的总体结果模式,并随后进行条件均值的成对比较,是分析本研究数据的最佳方法。这些结果为有关可视化方法的一些轶事证据提供了定量支持。任务和测试框架还为比较其他可视化方法,创建更有效的方法以及定义其他任务以进一步理解方法之间的权衡关系提供了基础。将来,我们还设想将这项工作扩展到更雄心勃勃的比较中,例如在嵌入三维空间中的二维表面上评估二维矢量,并为三维可视化方法定义类似的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号